Air Conditioning Effects in MOBILE6

Janet C. Kremer
U.S. EPA Office of Mobile Sources
June 29, 1999

Outline

- MOBILE6 Air Conditioning Corrections
 - Emissions
 - Activity
 - Market Penetration

Air Conditioning - Testing

- 38 vehicles tested at EPA, ATL
- "EPA Simulation": 95 deg F, driver window down
 - Correlation vehicle tested in environmental chamber indicates adequate vehicle loading
- Represents emission levels under full A/C system loading ("Full-Usage")

Air Conditioning - Emissions

- Initial Proposal: Multiplicative adjustments dependent on speed for all pollutants
- Why proposal was discarded:
 - Not applicable to older or future model years
 - Take into account base emissions

Emissions Continued: ANOVA Analysis

- Looked at all three pollutants separately
- ANOVA
 - Dependent: A/C effect (A/C On-A/C Off)
 - Independent: A/C_{base}, Speed, Vehicle Class,
 Facility
 - took high and normal emitters into consideration
- Looked at two different fits:
 - linear space
 - log space

NOx Emissions

- ANOVA
- Conclusions
 - Separate LDV vs. LDT
 - Separate Ramp

NOx Emissions Continued: Light-Duty Vehicles and Trucks

- ANOVA over all facilities except Ramp
 - Dependent: NOx A/C effect
 - Independents: Log (NOx A/C_{base} +1), Log (Speed)
- **■** Conclusion:
 - Interactive effect with speed and base emissions

NOx Emissions Continued: Final Equations:

- Light-duty Vehicles
 - NOx A/C Effect=4.867 Log(NOx A/C_{base} +1) 2.296 (Log(Speed)*Log(NOx A/C_{base} + 1))
- Light-duty Trucks
 - NOx A/C Effect= 1.93 Log(NOx A/ C_{base} +1)- 0.769(Log(Speed)*Log(NOx A/ C_{base} +1))

CO Emissions

- ANOVA Analyses
- **■** Conclusions:
 - Separate Local Cycles (Local & NYCC)
 - Separate LDV vs LDT
 - Separate by emission classification

CO Emissions Continued: LDV and LDT Normal Emitters

ANOVA

- Dependent: CO A/C Effect
- Independent: CO A/C_{base}, Speed

■ Conclusions:

- LDV: CO A/C_{base} and Speed are significant
- LDT: Speed is significant

CO Emissions Continued: Normal Emitter Final Equations

- Light-duty Vehicles:
 - CO A/C Effect = $(.815*(CO A/C_{base}) + .05272*(Speed))$
- Light-duty Trucks:
 - CO A/C Effect = .104*(Speed)

NMHC Emissions

- ANOVA
- **■** Conclusion:
 - vehicle class not significant
 - NMHC A/C_{base} is significant
 - Separate by emission classification

NMHC Emissions Continued: Normal Emitters

ANOVA

- Dependent: NMHC A/C Effect
- Independent: NMHC_{base}, Speed, Facility, Class

■ Conclusion:

- Separate Local Cycle
- Speed is significant
- Final Equation for all vehicle classes:
 - NMHC A/C Effect = .001162(Speed)

Continuing Emissions Analysis

- NOx Emissions
 - Ramp Cycle
- **CO Emissions**
 - High Emitters (for non-local cycles)
 - Local Cycle
- **NMHC Emissions**
 - Local Cycle for Normal Emitters
 - High Emitters (for all cycles)

Air Conditioning Effects in MOBILE6

- Light-duty Vehicle Effects
 - LDV & LDT1
- Light-duty Truck Effects
 - LDT2, LDT3, LDT4
- Heavy-duty Gasoline Trucks
 - still under consideration
 - likely based on light-duty truck data

Air Conditioning Activity

- Account for in-use conditions
- Demand factor- Scales back full usage emissions based on temperature and humidity
- Demand factor = Fraction of time A/C compressor is engaged at given temperature and humidity (full usage = compressor engaged 100% of time)

A/C Compressor-On Fraction and Vehicle Emissions Relationship

Air Conditioning Activity: Heat Index

- Heat Index estimates driver discomfort by combining temperature and humidity
- Heat index vs. compressor-on relationships developed from Phoenix A/C survey data
 - 1994 SFTP project
 - 20 vehicles, late summer

Heat Index

Note: Heat Index values based on shady conditions

Compressor-On vs. Heat Index

Heat Index (F) - Start of Trip

Non-idle trips (weighted by number of trips)

A/C Activity Continued: Solar Load

Solar Load:

- Fraction of time A/C compressor is engaged varies by time of day
 - Three different curves:
 - Morning/Afternoon (sunrise-10am & 4pm-sunset)
 - Peak Sun (10am-4pm)
 - Nighttime (sunset-sunrise)

A/C Activity Continued: Cloud Cover

- MOBILE default: 0% cloud cover = daytime curve
- Cloud cover handled by assuming "night" curve = 100% cloud cover
- Intermediate conditions: interpolate in-between 0% and 100% levels

A/C Demand Factor Curves

Air Conditioning Activity - Market Penetration

Three Elements:

- 1 Fraction of A/C-equipped vehicles
- 2 Fraction of (1) with A/C malfunctions
- 3 Fraction of (2) not repaired
 - Warranty
 - Vehicle Age
 - Freon vs. R-134a

Unrepaired A/C Malfunctions

CLASS: LDT CYCLE: ART-EF 2.5 2.0 NOx A/C Effect (grams/mile) 1.5 1.0 .5 **NOx A/C Effect** 0.0 **PRED NOx A/C Effect** -.5 **DATA** .5 1.0 1.5 2.0 2.5 0.0 3.0 NOx A/C base

CLASS: LDT CYCLE: FWY-AC 8. .6 NOx A/C Effect (grams/mile) .4 .2 -.0 -.2 **NOx A/C Effect PRED** -.4 **NOx A/C Effect** -.6 **DATA** .5 1.0 1.5 2.0 2.5 0.0 3.0 NOx A/C base

CLASS: LDV CYCLE: ART-EF 20 CO DELTA (grams/mile) 10 0 ▲ CO_PRED CO_DIFF -10 **DATA** 0 10 -10 20 CO OFF

CLASS: LDV CYCLE: FWY-AC CO DELTA (grams/mile) CO_PRED CO_DIFF -10 **DATA CO OFF**

CLASS: LDT CYCLE: ART-EF 20 10 CO DELTA (grams/mile) 0 -10 ▲ CO_PRED CO_DIFF -20 **DATA** 0 10 20 -10 30 CO OFF

